Volver a Guía
    
                    
                
                    
                    
                    
Ir al curso
            
            
    
        
            
                
                    
                        
                            
                    
                    
                    
                        
                            
                                
                                    
                                    
                                        
                                    
                        
                    
                    
                        
                        
                        
                        
                            
                                
                                    
                                        
                                
                            
                            
                                
                                    
                                                                                    
                                                
                                                    
                                                        
                                                    
                                                    
                                                
                                                                            
                                
                            
                        
                        
                        
                            
                                
                            
                                
                                                                    
                                                            
                        
                    
                
            
        
    
        
    CURSO RELACIONADO
Análisis Matemático 66
                        
                            2025                        
                        
                            
                                                                    
                                        CABANA                                    
                                
                            
                    
                    
                        ¿Te está ayudando la guía resuelta?
                        Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
                    
Ir al curso
                                ANÁLISIS MATEMÁTICO 66                                UBA XXI                            
                            
                            
                            
                                CÁTEDRA CABANA                            
                        
                                            
                                                3.10.
                                                Derivar, utilizando la regla de la cadena, las siguientes funciones:                                                                                            
                                            
x) $f(x)=\left(\frac{\sin x}{x^{2}+1}\right)^{\sqrt{5 x+1}}$
                                    x) $f(x)=\left(\frac{\sin x}{x^{2}+1}\right)^{\sqrt{5 x+1}}$
Respuesta
                                            Acá nuevamente tenemos algo que depende de $x$ elevado a algo que también depende de $x$... Vamos a seguir los mismos pasos que te mostré en el item (t):
                                                                    
                                Reportar problema
                                
                                
                            Nosotros queremos derivar $f(x)=\left(\frac{\sin x}{x^{2}+1}\right)^{\sqrt{5 x+1}}$
1. Aplicamos logaritmo natural en ambos miembros:
$ \ln(f(x)) = \ln\left(\left(\frac{\sin x}{x^{2}+1}\right)^{\sqrt{5x + 1}}\right) $
2. Utilizamos la propiedad del logaritmo para el término de la derecha:
$ \ln(f(x)) = \sqrt{5x + 1} \cdot \ln\left(\frac{\sin x}{x^{2}+1}\right) $
3. Derivamos ambos lados con respecto a \( x \). Atenti acá al derivar el lado derecho, no desesperes. Primero aplicá regla del producto. Y cuando te toque derivar "al segundo", vas a tener que aplicar la regla de la cadena, y la derivada de adentro del logaritmo es un cociente... así que ahí aplicá regla del cociente. Deberías llegar a esto:
$ \frac{f'(x)}{f(x)} = \frac{5}{2\sqrt{5x + 1}} \cdot \ln\left(\frac{\sin x}{x^{2}+1}\right) + \sqrt{5x + 1} \cdot (\frac{1}{\frac{\sin x}{x^{2}+1}}) \cdot \left(\frac{\cos x \cdot (x^{2}+1) - \sin x \cdot 2x}{(x^{2}+1)^2}\right) $
6. Despejamos $f'(x)$
$ f'(x) = \left(\frac{\sin x}{x^{2}+1}\right)^{\sqrt{5x + 1}} \cdot \left(\frac{5}{2\sqrt{5x + 1}} \cdot \ln\left(\frac{\sin x}{x^{2}+1}\right) + \sqrt{5x + 1} \cdot (\frac{x^2 + 1}{\sin x}) \cdot \left(\frac{\cos x \cdot (x^{2}+1) - \sin x \cdot 2x}{(x^{2}+1)^2}\right)\right) $
                                        🤖
                                    ¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante🤖
                                                ¡Hola! Soy ExaBoti
Para chatear conmigo sobre este ejercicio necesitas iniciar sesión
Por ahi como son multiplicaciones talvez no haya diferencia tambien, no estoy seguro
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar esta respuesta? Esta acción no se puede deshacer.
Confirmar eliminación
¿Estás segurx de que quieres eliminar este comentario? Esta acción no se puede deshacer.