Volver a Guía
Ir al curso
$\textbf{2)}$ Buscamos las raíces de $f(x)$ igualando la función a cero
Reportar problema
CURSO RELACIONADO
Análisis Matemático 66
2024
CABANA
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 UBA XXI
CÁTEDRA CABANA
4.2.
De los siguientes ítems del ejercicio 1, calcular: raíces, conjunto de positividad y negatividad - d, e, f, g, h, i, j, k, l, m, n, ñ
i) $f(x)=e^{x^{2}+x}$
i) $f(x)=e^{x^{2}+x}$
Respuesta
$\textbf{1)}$ Identificamos el dominio de $f(x)$
El dominio de $f$ es $\mathbb{R}$
$e^{x^{2}+x} = 0$
La exponencial jamás vale cero, por lo tanto esta función no tiene raíces
$\textbf{3)}$ Dividimos la recta real en intervalos donde sabemos que $f(x)$ es continua y no tiene raíces:
En este caso sería simplemente... $\mathbb{R}$!
$\textbf{4)}$ Evaluamos el signo de \( f(x) \) en cada uno de los intervalos:
Bueno, si querés elegí algún número y evalualo en la función a ver cuánto te da, pero acordate que la exponencial siempre es positiva... así que...
Conjunto de positividad: $\mathbb{R}$
Conjunto de negatividad: $\emptyset$