Volver a Guía

CURSO RELACIONADO

Análisis Matemático 66

2025 CABANA

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
ANÁLISIS MATEMÁTICO 66 UBA XXI
CÁTEDRA CABANA

Práctica 5 - Polinomio de Taylor

5.3. Sea el polinomio de Taylor $P(x)=5(x-3)^{6}+3(x-3)+1$ asociado a la función $y=f(x)$ centrado en $x=3$ de grado 6. Se pide:
b) Calcular la recta tangente a $f(x)$ en $x=3$.

Respuesta

Acordate que la recta tangente a $f$ en $x=3$ es, simplemente, su polinomio de Taylor de orden $1$ centrado en $x=3$. 

Es decir,

$y = 3(x-3) + 1$

Podés hacer la distributiva si querés y expresarla así también: $ y = 3x - 8 $
Reportar problema
Iniciá sesión o Registrate para dejar tu comentario.
Comentarios
VICTORIA
4 de mayo 19:30

2025-05-04%2019:27:50_6275843.pngHola Flor justo te habia preguntado esto pero lo puse en exaboti, queria saber si es lo mismo si lo expreso asi
Flor
PROFE
5 de mayo 8:45
@VICTORIA Hola Vicky! Sisi, es exactamente lo mismo... si vos alteras "el orden" en una suma, no cambia nada, por ejemplo así como es lo mismo poner $2 + 3$ o $3 + 2$, acá pasa lo mismo... Supongo que ExaBoti te habrá respondido lo mismo! 
1 Responder
🤖 ExaBoti
Esta conversación es privada
🤖 ExaBoti (privado)