Volver a Guía
Ir al curso
@Renato Hola Renato! El resultado lo podés dejar tranquilamente así $\sqrt{\frac{2}{3}} + \frac{3}{2}$. Porque de hecho si haces esa cuenta en la calculadora ya te queda un número con un montón de decimales... A lo sumo si querés podrías poner así:
CURSO RELACIONADO
Análisis Matemático 66
2024
GUTIERREZ (ÚNICA)
¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰
Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)
4.
Calcule, si existe, el límite de las siguientes sucesiones.
f) $f_{n}=\sqrt{\frac{2 n^{2}-1}{3 n^{2}+2}}+\frac{3 n-1}{2 n+3}$
f) $f_{n}=\sqrt{\frac{2 n^{2}-1}{3 n^{2}+2}}+\frac{3 n-1}{2 n+3}$
Respuesta
Calculamos ahora este límite:
Reportar problema
$ \lim_{n \to +\infty} \sqrt{\frac{2 n^{2}-1}{3 n^{2}+2}}+\frac{3 n-1}{2 n+3} $
Acá nada de indeterminaciones "infinito menos infinito" ni multiplicar y dividir por el conjugado eh! jaja este ejercicio tranquilamente podría haber aparecido en el item anterior, son todas indeterminaciones "infinito sobre infinito". Resolvemos cada una sacando factor común "el que manda", lo hago en dos cálculos auxiliares separados:
Cálculo auxiliar 1
$ \lim_{n \to +\infty} \sqrt{\frac{2 n^{2}-1}{3 n^{2}+2}} = \lim_{n \to +\infty} \sqrt{\frac{n^2(2-\frac{1}{n^2})}{n^2(3+\frac{2}{n^2})}} = \lim_{n \to +\infty} \sqrt{\frac{2-\frac{1}{n^2}}{3+\frac{2}{n^2}}} = \sqrt{\frac{2}{3}} $
Cálculo auxiliar 2
$ \lim_{n \to +\infty} \frac{3 n-1}{2 n+3} = \lim_{n \to +\infty} \frac{n(3-\frac{1}{n})}{n(2+\frac{3}{n})} = \lim_{n \to +\infty} \frac{3-\frac{1}{n}}{2+\frac{3}{n}} = \frac{3}{2}$
Por lo tanto, el resultado del límite es:
$ \lim_{n \to +\infty} \sqrt{\frac{2 n^{2}-1}{3 n^{2}+2}}+\frac{3 n-1}{2 n+3} = \sqrt{\frac{2}{3}} + \frac{3}{2}$
ExaComunidad
Iniciá sesión o Registrate para dejar
tu
comentario.
Renato
29 de abril 19:09
Buenas noches profe, este ejercicio no podria seguir desarrollandose?
Flor
PROFE
30 de abril 7:45
$\sqrt{\frac{2}{3}} + \frac{3}{2} \approx 2.31... $
0
Responder