Volver a Guía

CURSO RELACIONADO

Análisis Matemático 66

2024 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 7: Estudio de Funciones

7. Para cada una de las siguientes funciones, halle el dominio, los intervalos de crecimiento y de decrecimiento, los extremos locales. Determine cuáles de ellos son absolutos. Escriba la ecuación de las asíntotas. Determine, si la cuenta lo permite, los intervalos de concavidad y de convexidad y los puntos de inflexión. Con la información obtenida haga un gráfico aproximado de la función
m) $f(x)=x^{5}-5 x$

Respuesta

Vamos a hacer un análisis completo de la función siguiendo la estructura que vimos en las clases de estudio de funciones.

1) Identificamos el dominio de $f(x)$ En este caso no hay ninguna restricción, el dominio de $f$ es todo $\mathbb{R}$. 2) Asíntotas - Asíntotas verticales: Como el dominio es $\mathbb{R}$, esta función no tiene asíntotas verticales.
- Asíntotas horizontales: Tomamos los límites cuando $x$ tiende a $\pm \infty$
$ \lim_{x \to +\infty} (x^5 - 5x) = +\infty $ $ \lim_{x \to -\infty} (x^5 - 5x) = -\infty $ 
Es decir, $f$ no tiene asíntotas horizontales.  3) Calculamos $f'(x)$: 

$ f'(x) = 5x^4 - 5 $

4) Igualamos $f'(x)$ a cero para encontrar los puntos críticos:

$ 5x^4 - 5 = 0 $

$x^4 = 1$ Y por tanto, tenemos dos puntos críticos: $ x = 1 $ y $ x = -1 $

5) Dividimos la recta real en intervalos donde sabemos que $f'(x)$ es continua y no tiene raíces:

a) $x < -1$
b) $-1 < x < 1$
c) $x > 1$
6) Evaluamos el signo de $f'(x)$ en cada uno de los intervalos: a) Para $x < -1$ $f'(x) > 0$. En este intervalo, $f$ es creciente. b) Para $-1 < x < 1$,
$f'(x) < 0$. En este intervalo, $f$ es decreciente. c) Para $x > 1$ 
$f'(x) > 0$. En este intervalo, $f$ es creciente. Te dejo acá cómo me quedó el gráfico en GeoGebra:

2024-04-19%2018:03:34_4347089.png
Reportar problema
ExaComunidad
Iniciá sesión o Registrate para dejar tu comentario.
Benjamin
21 de mayo 15:33
como seria el limite de x^5-5x? es infinito menos infinito?
Flor
PROFE
21 de mayo 19:57
@Benjamin Fijate que esto ya te lo respondí en una de las primeras dudas de hoy, que pasaba exactamente lo mismo, seguramente con eso quede claro pero sino avisame!
0 Responder
Benjamin
22 de mayo 8:36
sisi ahora si queda claro despues de tanto jaja
0 Responder