Volver a Guía

CURSO RELACIONADO

Análisis Matemático 66

2025 GUTIERREZ (ÚNICA)

¿Te está ayudando la guía resuelta?
Sumate a nuestro curso, donde te enseño toda la materia de forma súper simple. 🥰


Ir al curso
ANÁLISIS MATEMÁTICO 66 CBC
CÁTEDRA GUTIERREZ (ÚNICA)

Práctica 9: Integrales

3. Calcule las derivadas de las siguientes funciones
d) $D(x)=\int_{0}^{\sin(x)} \frac{y}{2+y^{3}} d y$

Respuesta

Aplicamos el TFC:

$D'(x) = \left(\int_{0}^{\sin(x)} \frac{y}{2+y^{3}} dy \right)' = \frac{\sin(x)}{2+\sin^{3}(x)} \cdot \cos(x)$
Reportar problema
🤖
¿Tenés dudas? Pregúntale a ExaBoti
Asistente de IA para resolver tus preguntas al instante
🤖
¡Hola! Soy ExaBoti

Para chatear conmigo sobre este ejercicio necesitas iniciar sesión

ExaComunidad
Conecta con otros estudiantes y profesores
No hay comentarios aún

¡Sé el primero en comentar!

¡Uníte a la ExaComunidad! 💬

Conéctate con otros estudiantes y profesores